Распознавание голоса на компьютере. Pаспознавание речи и мгновенный перевод

«Хотелось бы сразу сказать, что с сервисами распознавания имею дело впервые. И поэтому расскажу о сервисах, с обывательской точки зрения» - отметил наш эксперт – «для тестирования распознавания я использовал пользовался тремя инструкциями: Google, Yandex и Azure».

Google

Небезызвестная IT-корпорация предлагает протестировать свой продукт Google Cloud Platform в режиме онлайн. Опробовать работу сервиса может бесплатно любой желающий. Сам продукт удобен и понятен в работе.

Плюсы:

  • поддержка более чем 80 языков;
  • быстрая обработка имен;
  • качественное распознавание в условиях плохой связи и при наличии посторонних звуков.

Минусы :

  • есть трудности при распознавании сообщений с акцентом и плохим произношением, что делает систему трудной в использовании кем-то кроме носителей языка;
  • отсутствие внятной технической поддержки сервиса.

Yandex

Распознавание речи от Yandex предоставляется в нескольких вариантах:

  • Облако
  • Библиотека для доступа с мобильных приложений
  • «Коробочная» версия
  • JavaScript API

Но будем объективными. Нас, в первую очередь, интересует не разнообразие возможностей использования, а качество распознавания речи. Поэтому, мы воспользовались пробной версией SpeechKit .

Плюсы:

  • простота в использовании и настройке;
  • хорошее распознавание текста на Русском языке;
  • система выдаёт несколько вариантов ответов и через нейронные сети пытается найти самый похожий на правду вариант.

Минусы:

  • при потоковой обработке некоторые слова могут определяться некорректно.

Azure

Система Azure разработана компанией Microsoft. На фоне аналогов она сильно выделяется за счёт цены. Но, будьте готовы столкнуться с некоторыми трудностями. Инструкция, представленная на официальном сайте то ли неполная, то ли устаревшая. Адекватно запустить сервис нам так и не удалось, поэтому пришлось воспользоваться сторонним окном запуска. Однако, даже здесь для тестирования вам понадобится ключ от сервиса Azure.

Плюсы:

  • относительно других сервисов, Azure очень быстро обрабатывает сообщения в режиме реального времени.

Минусы:

  • система очень чувствительна к акценту, с трудом распознает речь не от носителей языка;
  • система работает только на английском языке.

Итоги обзора:

Взвесив все плюсы и минусы мы остановились на Яндексе. SpeechKit дороже чем Azure, но дешевле чем Google Cloud Platform. В программе от Google было замечено постоянное улучшение качества и точности распознавания. Сервис самосовершенствуется за счет технологий машинного обучения. Однако, распознавание русскоязычных слов и фраз у Яндекса на уровень выше.

Как использовать распознавание голоса в бизнесе?

Вариантов использования распознавания масса, но мы остановим ваше внимание на том, который, в первую очередь, повлияет на продажи вашей компании. Для наглядности разберём процесс работы распознавания на реальном примере.

Не так давно, нашим клиентом стал один, известный всем SaaS сервис (по просьбе компании, имя сервиса не разглашается). С помощью F1Golos они записали два аудиоролика, один из которых был нацелен на продление жизни тёплых клиентов, другой – на обработку запросов клиентов.

Как продлить жизнь клиентов с помощью распознавания голоса?

Зачастую, SaaS сервисы работают по ежемесячной абонентской плате. Рано или поздно, период пробного пользования или оплаченного трафика - заканчивается. Тогда появляется необходимость продления услуги. Компанией было принято решение предупреждать пользователей об окончании трафика за 2 дня до истечения срока пользования. Оповещение пользователей происходило через голосовую рассылку. Ролик звучал так: «Добрый день, напоминаем, что у вас заканчивается период оплаченного пользования сервисом ХХХ. Для продления работы сервиса скажите - да, для отказа от предоставляемых услуг скажите нет».

Звонки пользователей, которые произнесли кодовые слова: ДА, ПРОДЛИТЬ, ХОЧУ, ПОДРОБНЕЕ; были автоматически переведены на операторов компании. Так, порядка 18% пользователей продлили регистрацию благодаря лишь одному звонку.

Как упростить систему обработки данных с помощью распознавание речи?

Второй аудиоролик, запущенный той же компанией, носил другой характер. Они использовали голосовую рассылку для того, чтобы снизить издержки на верификацию номеров телефона. Ранее они проверяли номера пользователей с помощью звонка-роботом. Робот просил пользователей нажать определенные клавиши на телефоне. Однако с появлением технологий распознавания, компания сменила тактику. Текст нового ролика звучал следующим образом: «Вы зарегистрировались на портале ХХХ, если вы подтверждаете свою регистрацию, скажите да. Если вы не направляли запрос на регистрацию, скажите нет». Если клиент произносил слова: ДА, ПОДТВЕРЖДАЮ, АГА или КОНЕЧНО, данные об этом моментально переводились в CRM-систему компании. И запрос на регистрацию подтверждался автоматически за пару минут. Внедрение технологий распознавания снизило время одного звонка с 30 до 17 секунд. Тем самым, компания снизила издержки почти в 2 раза.

Если вам интересны другие способы использования распознавания голоса, или вы хотите узнать подробнее о голосовых рассылках, переходите по ссылке. На F1Golos вы сможете оформить первую рассылку бесплатно и узнать на себе, как работают новые технологии распознавания.

Обновлено: Понедельник, Июль 31, 2017

Какое отношение имеет полу фантастическая идея разговора с компьютером к профессиональной фотографии? Почти никакого, если вы не поклонник идеи бесконечного развития всего технического окружения человека. Представьте на минуту, что вы отдаете голосом приказы своему фотоаппарату изменить фокусное расстояние и сделать коррекцию экспозиции на пол ступени в плюс. Дистанционное управление камерой уже реализовано, но там нужно молча нажимать на кнопки, а тут слышащий фотик!

Стало традицией приводить в пример голосового общения человека с ЭВМ какой- либо фантастический фильм, ну хоть бы «Космическая одиссея 2001» режиссера Стэнли Кубрика. Там бортовой компьютер не только ведет осмысленный диалог с астронавтами, но умеет читать по губам как глухой. Другими словами, машина научилась распознавать человеческую речь без ошибок. Возможно, кому-то дистанционное голосовое управление фотокамерой покажется лишним, но многим бы понравилось такая фраза «Сними нас, крошка» и снимок всей семьи на фоне пальмы готов.

Ну, вот и я отдал дань традиции, слегка пофантазировал. Но, говоря от души, эта статья писалась трудно, а началось все с подарка в виде смартфона с ОС «Андроид 4». Эта модель HUAWEI U8815 имеет небольшой сенсорный экран в четыре дюйма и экранную клавиатуру. Набирать на ней несколько непривычно, но оказалось это и не особенно нужно. (image01)

1. Распознание голоса в смартфоне на ОС «Андроид»

Осваивая новую игрушку, я заметил графическое изображение микрофона в строке поиска Google и на клавиатуре в «Заметках». Ранее мне было не интересно, что этот символ обозначает. Разговоры я вел в Skype , а письма набирал на клавиатуре. Так поступает большинство пользователей Интернета. Но как потом мне объяснили, в поисковик Google был добавлен голосовой поиск на русском языке и появились программы, позволяющие диктовать короткие сообщения при использовании браузера «Chrome» .

Я произнес фразу из трех слов, программа их определила и показала в ячейке с синим фоном. Тут было чему удивиться, потому что все слова были написаны правильно. Если нажать на эту ячейку, то фраза появляется в текстовом поле андроид-блокнота. Так еще пару фраз наговорил и отправил сообщение помощнику по SMS.


2. Краткая история программ распознания голоса.

Для меня не было открытием, что современные достижения в области управления голосом позволяют отдавать команды бытовой технике, автомобилю, роботу. Командный режим был представлен в прошлых версиях Windows, OS/2 и Mac OS. Мне встречались программы-говорилки, но что с них пользы? Возможно, это моя особенность, что говорить мне проще, чем печатать на клавиатуре, а на сотовом телефоне я вообще не могу ничего набрать. Приходится записывать контакты на ноутбуке с нормальной клавиатурой и передавать по USB кабелю. Но чтобы просто говорить в микрофон и компьютер сам набирал текст без ошибок – это для меня было мечтой. Атмосферу безнадежности поддерживали дискуссии на форумах. В них везде была такая печальная мысль:

«Однако на деле до настоящего времени программ для реального распознавания речи (да еще и на русском языке) практически не существует, и созданы они будут, очевидно, не скоро. Более того, даже обратная распознаванию задача - синтез речи, что, казалось бы, значительно проще распознавания, до конца так и не решена». (КомпьютерПресс №12, 2004г.)

«Нормальных программ распознавания речи (не только русской) по сию пору нет, поскольку задача изрядно трудна для компьютера. А хуже всего то, что механизм распознавания слов человеком так и не осознан, поэтому не от чего отталкиваться при создании программ-распознавалок». (Еще одно обсуждение на форуме).

При этом обзоры англоязычных программ ввода текста голосом указывали на явные успехи. Например, IBM ViaVoice 98 Executive Edition имела базовый словарь в 64000 слов и возможность добавления такого же количества своих слов. Процент распознания слов без тренировки программы был около 80% и при последующей работе с конкретным пользователем доходил до 95%.

Из программ распознания русского языка стоит отметить «Горыныч» – дополнение к англоязычной Dragon Dictate 2.5. Про поиски, а потом «битву с пятью Горынычами» я расскажу во второй части обзора. Первым я нашел «английского Дракона».

3. Программа распознания слитной речи «Dragon Naturally Speaking»

Современная версия программы фирмы «Nuance» оказалась у моей давнишней знакомой по Минскому институту иностранных языков. Она ее привезла из заграничной поездки, а купила, думая, что та сможет быть «компьютерным секретарем». Но что-то не пошло, и программа осталась на ноутбуке почти забытая. По причине отсутствия сколь-нибудь внятного опыта мне пришлось ехать к своей знакомой самому. Все это длительное вступление необходимо для правильного понимания выводов, которые я сделал.

Полное название первого моего дракона звучало так: . Программа на английском и все в ней понятно даже без руководства. Первым шагом необходимо создать профиль конкретного пользователя для определения особенностей звучания слов в его исполнении. Что я и сделал – важен возраст говорящего, страна, особенности произношения. Мой выбор таков: возраст 22–54 года, английский UK, произношение стандартное. Далее идет несколько окон, в которых вы настраиваете свой микрофон. (image04)

Следующий этап у серьезных программ распознания речи – тренировка под особенности произношения конкретного человека. Вам предлагается выбрать характер текста: мой выбор – краткая инструкция по диктовке, но можно «заказать» и юмористический рассказ.

Суть этого этапа работы с программой предельно проста – в окошке выводится текст, над ним желтая стрелочка. При правильном произнесении стрелочка перемещается по фразам, а внизу идет полоса прогресса тренировки. Английский разговорный был мной изрядно позабыт, так что продвигался я с трудом. Время также было ограничено – компьютер ведь не мой и пришлось тренировку прервать. Но подруга сказала, что проходила тест менее чем за полчаса. (image05)

Отказавшись от адаптации программой моего произношения, я перешел в основное окно и запустил встроенный текстовой редактор. Говорил отдельные слова из каких-то текстов, что нашел на компьютере. Те слова, что произнес правильно, программа напечатала, те, что плохо сказал, заменила чем-то «английским». Произнеся команду «стереть строку» по-английски четко – программа ее выполнила. Значит, команды я читаю правильно, и программа распознает их без предварительной тренировки.

Но мне было важно, как этот «дракон» пишет по-русски. Как вы поняли из предыдущего описания, при тренировке программы можно выбрать только английский текст, русского там попросту нет. Понятно, что и натренировать распознание русской речи не получится. На следующем фото можно увидеть, какую фразу набрала прога при произнесении русского слова «Привет». (image06)

Итог общения с первым драконом получился слегка комичным. Если внимательно почитать текст на официальном сайте, то можно увидеть английскую «специализацию» этого программного продукта. Кроме того, при загрузке мы читаем в окне программы «English». Так зачем это все было нужно. Понятно, что виноваты форумы и слухи…

Но есть и полезный опыт. Моя знакомая попросила посмотреть состояние ее ноутбука. Как-то медленно он стал работать. Это не удивительно – системный раздел имел только 5% свободного места. Удаляя ненужные программы я увидел, что официальная версия занимала более 2,3 Гб. Эта цифра нам пригодится позже. (image. 07)



Распознание русской речи, как оказалось, было задачей нетривиальной. В Минске мне удалось найти у знакомого «Горыныча». Диск он долго искал в своих старых завалах и, по его словам, это официальное издание. Установилась прога мгновенно, и я узнал, что в ее словаре есть 5000 русских слов плюс 100 команд и 600 английских слов плюс 31 команда.

Вначале нужно настроить микрофон, что я сделал. Потом открыл словарь и добавил слово «проверка» ибо его не оказалось в словаре программы. Старался говорить четко, монотонно. Наконец, открыл программу «Горыныч Про 3,0», включил режим диктовки и получил вот такой список «близких по звучанию слов». (image. 09)

Полученный результат меня озадачил, ведь он явно отличался в худшую сторону от работы андроид-смартфона, и я решил попробовать другие программы из «интернет-магазина Google Chrome» . А разбираться со «змеями-горынычами» отложил на потом. Мне показалось это откладывание действием в исконно русском духе

5. Возможности компании Google по работе с голосом

Для работы с голосом на обычном компьютере с OS Windows вам понадобится установить браузер Google Chrome . Если вы в нем работаете в Интернете, то внизу справа можно нажать на ссылку магазина программного обеспечения. Там совершенно бесплатно я нашел две программы и два расширения для голосового ввода текста. Программы называются «Голосовой блокнот» и «Войснот – голос в текст» . После установки их можно найти на закладке «Приложения» вашего браузера «Хром» . (image. 10)

Расширения называются «Google Voice Search Hotword (Beta) 0.1.0.5» и «Голосовой ввод текста — Speechpad.ru 5.4» . После установки их можно будет выключить или удалить на вкладке «Расширения» . (image. 11)

VoiceNote . На вкладке приложения в браузере «Хром» дважды щелкните иконку программы. Откроется диалоговое окно как на картинке ниже. Нажав на значке микрофона, вы говорите в микрофон короткие фразы. Программа передает ваши слова на сервер по распознанию речи и набирает текст в окне. Все слова и фразы, показанные на иллюстрации, были набраны с первого раза. Очевидно, что этот способ работает только при активном подключении к Интернету. (image. 12)

Голосовой блокнот . Если запустить программу на вкладке приложений, то откроется новая вкладка Интернет страницы Speechpad.ru . Там есть подробная инструкция, как пользоваться этой службой и компактная форма. Последняя показана на иллюстрации ниже. (image. 13)

Голосовой ввод текста позволяет заполнять текстовые поля Интернет страниц голосом. Для примера я вышел на свою страницу «Google+» . В поле ввода нового сообщения щелкнул правой кнопкой мыши и выбрал пункт «SpeechPad» . Окрашенное в розовый цвет окно ввода говорит, что можно диктовать ваш текст. (image. 14)

Google Voice Search позволяет производить поиск голосом. При установке и активации этого расширения в строке поиска появляется символ микрофона. Когда вы его нажмете, появится символ в большом красном круге. Просто скажите поисковую фразу и она появится в результатах поиска. (image. 15)

Важное замечание: для работы микрофона с расширениями «Хром» вам нужно разрешить доступ к микрофону в настройках браузера. По умолчанию в целях безопасности он запрещен. Пройдите в Настройки→Личные данные→Настройки контента . (Для доступа ко всем настройкам в конце списка щелкните Показать дополнительные настройки) . Откроется диалоговое окно Настройки содержания страницы . Выберите вниз по списку пункт Мультимедиа→микрофон .

6. Итоги работы с программами распознания русской речи

Небольшой опыт использования программ ввода текста голосом показал отличную реализацию этой возможности на серверах интернет-компании Google . Без всякой предварительной тренировки слова распознаются правильно. Это свидетельствует о том, что проблема распознания русской речи решена.

Теперь можно говорить, что результат разработок Google будет новым критерием для оценки продуктов других производителей. Хотелось бы, чтобы система распознания работала в автономном режиме без обращения к серверам компании –так удобнее и быстрее. Но когда будет выпущена самостоятельная программа по работе с непрерывным потоком русской речи неизвестно. Стоит, однако, предположить, что при возможности тренировки это «творение» станет настоящим прорывом.

Программы российских разработчиков «Горыныч» , «Диктограф» и «Комбат» я подробно рассмотрю во второй части данного обзора. Эта статья писалась очень медленно по той причине, что сам поиск оригинальных дисков сейчас затруднен. На данный момент у меня уже есть все версии российских «распознавалок» голоса в текст кроме «Комбат 2.52». Ни у кого из моих знакомых или коллег нет этой программы, а я сам имею только несколько хвалебных отзывов на форумах. Правда нашелся такой странный вариант – скачать «Комбат» через SMS, но мне он не нравится. (image16)


Короткий видео ролик покажет вам, как идет распознание речи в смартфоне с ОС Андроид. Особенность голосового набора — это необходимость подключения к серверам Гугла. Таким образом у вас должен работать Интернет

Для того, чтобы распознать речь и перевести её из аудио или видео в текст , существуют программы и расширения (плагины) для браузеров. Однако зачем всё это, если есть онлайн сервисы? Программы надо устанавливать на компьютер, более того, большинство программ распознавания речи далеко не бесплатны.


Большое число установленных в браузере плагинов сильно тормозит его работу и скорость серфинга в интернет. А сервисы, о которых сегодня пойдет речь, полностью бесплатны и не требуют установки – зашел, попользовался и ушел!

В этой статье мы рассмотрим два сервиса перевода речи в текст онлайн . Оба они работают по схожему принципу: Вы запускаете запись (разрешаете браузеру доступ к микрофону на время пользования сервисом), говорите в микрофон (диктуете), а на выходе получаете текст, который можно скопировать в любой документ на компьютере.

Speechpad.ru

Русскоязычный онлайн сервис распознавания речи. Имеет подробную инструкцию по работе на русском языке.

  • поддержку 7 языков (русский, украинский, английский, немецкий, французский, испанский, итальянский)
  • загрузку для транскрибации аудио или видео файла (поддерживаются ролики с YouTube)
  • синхронный перевод на другой язык
  • поддержку голосового ввода знаков препинания и перевода строки
  • панель кнопок (смена регистра, перевод на новую строку, кавычки, скобки и т.п.)
  • наличие персонального кабинета с историей записей (опция доступна после регистрации)
  • наличие плагина к Google Chrome для ввода текста голосом в текстовом поле сайтов (называется «Голосовой ввод текста — Speechpad.ru»)

Dictation.io

Второй онлайн сервис перевода речи в текст. Иностранный сервис, который между тем, прекрасно работает с русским языком, что крайне удивительно. По качеству распознавания речи не уступает Speechpad, но об этом чуть позже.

Основной функционал сервиса:

  • поддержка 30 языков, среди которых присутствуют даже венгерский, турецкий, арабский, китайский, малайский и пр.
  • автораспознавание произношения знаков препинания, перевода строки и пр.
  • возможность интеграции со страницами любого сайта
  • наличие плагина для Google Chrome (называется «VoiceRecognition»)

В деле распознавания речи самое важное значение имеет именно качество перевода речи в текст. Приятные «плюшки» и вохможности – не более чем хороший плюс. Так чем же могут похвастаться в этом плане оба сервиса?

Сравнительный тест сервисов

Для теста выберем два непростых для распознавания фрагмента, которые содержат нечасто употребляемые в нынешней речи слова и речевые обороты. Для начала читаем фрагмент поэмы «Крестьянские дети» Н. Некрасова.

Ниже представлен результат перевода речи в текст каждым сервисом (ошибки обозначены красным цветом):

Как видим, оба сервиса практически с одинаковыми ошибками справились с распознаванием речи. Результат весьма неплохой!

Теперь для теста возьмем отрывок из письма красноармейца Сухова (к/ф «Белое солнце пустыни»):

Отличный результат!

Как видим, оба сервиса весьма достойно справляются с распознаванием речи – выбирайте любой! Похоже что они даже используют один и тот же движок — уж слижком схожие у них оказались допущенные ошибки по результатам тестов). Но если Вам необходимы дополнительные функции типа подгрузки аудио / видео файла и перевода его в текст (транскрибация) или синхронного перевода озвученного текста на другой язык, то Speechpad будет лучшим выбором!


Кстати вот как он выполнил синхронный перевод фрагмента поэмы Некрасова на английский язык:

Ну а это краткая видео инструкция по работе со Speechpad, записанная самим автором проекта:

Друзья, понравился ли Вам данный сервис? Знаете ли Вы более качественные аналоги? Делитесь своими впечатлениями в комментариях.

Да только воз и ныне там.
И.А. Крылов. Басня «Лебедь, Щука и Рак»

Две главные задачи машинного распознавания речи — достижение гарантированной точности при ограниченном наборе команд хотя бы для одного фиксированного голоса и независящее от дикции распознавание произвольной слитной речи с приемлемым качеством — не решены до сих пор, несмотря на длительную историю их разработки. Более того, существуют сомнения в принципиальной возможности решения обеих задач, поскольку даже человек не всегда может стопроцентно распознать речь собеседника.

огда-то писателям-фантастам возможность обычного разговора с компьютером казалась столь очевидной и естественной, что первые вычислительные машины, лишенные голосового интерфейса, воспринимались как нечто неполноценное.

Казалось бы, почему не заняться решением этой проблемы программно, с использованием «умных» компьютеров? Ведь и производители подобных продуктов вроде бы имеются, и мощность компьютеров непрерывно растет, и технологии совершенствуются. Однако успехи в области автоматического распознавания речи и преобразования ее в текст, похоже, находятся на том же уровне, что и 20-40 лет назад. Помнится, еще в середине 90-х годов компания IBM уверенно заявила о наличии такого рода инструментов в OS/2, а чуть позже и Microsoft подключилась к внедрению подобных технологий. Пыталась заниматься распознаванием речи и компания Apple, но в начале 2000 года она официально объявила об отказе от этого проекта. Продолжают работать в этой области компании IBM (Via Voice) и Philips, причем функцию распознавания речи IBM не только встраивала в свою операционную систему OS/2 (ныне уже канувшую в лету), но и до сих пор выпускает в качестве отдельного продукта. Пакет для распознавания слитной речи Via Voice (http://www-306.ibm.com/software/voice/viavoice) от IBM отличался тем, что с самого начала даже без обучения распознавал до 80% слов. При обучении же вероятность правильного распознавания повышалась до 95%, а к тому же параллельно с настройкой программы на конкретного пользователя происходило освоение будущим оператором навыков работы с системой. Сейчас ходят слухи о том, что подобные новации будут реализованы и в составе Windows XP, хотя глава и основатель корпорации Билл Гейтс неоднократно заявлял, что считает речевые технологии еще не готовыми для массового применения.

Когда-то американская компания Dragon Systems создала, наверное, первую коммерческую систему распознавания речи — Naturally Speaking Preferred, которая работала еще в 1982 году на IBM PC (даже не XT!). Правда, эта программа больше напоминала игру и с тех пор никаких серьезных подвижек компания так и не сделала, а к 2000 году и вовсе разорилась, причем ее последняя версия Dragon Dictate Naturally Speaking была продана компании Lernout&Hauspie Speech Products (L&H), являвшейся тоже одним из лидеров в области систем и методов распознавания и синтеза речи (Voice Xpress). L&H, в свою очередь, тоже дошла до банкротства с распродажей активов и имущества (к слову сказать, Dragon Systems была продана почти за 0,5 млрд. долл., а L&H — уже за 10 млн., так что своими масштабами в этой области впечатляет не прогресс, а регресс!). Технологии L&H и Dragon Systems перешли к компании ScanSoft, которая занималась до этого распознаванием оптических образов (в ее ведении сегодня находятся некоторые известные программы распознавания печатного текста типа OmniPage), но там, похоже, этим никто серьезно не занимается.

Российская компания Cognitive Technologies, достигнувшая значительных успехов в области распознавания символов, сообщила в 2001 году о совместном проекте с Intel по созданию систем распознавания русской речи — для Intel был подготовлен речевой корпус русского языка RuSpeech. Собственно, RuSpeech представляет собой речевую базу данных, которая содержит фрагменты непрерывной русской речи с соответствующими текстами, фонетической транскрипцией и дополнительной информацией о дикторах. Cognitive Technologies ставила перед собой цель создать «дикторонезависимую» систему распознавания непрерывной речи, а речевой интерфейс состоял из системы сценария диалога, синтеза речи по тексту и системы распознавания речевых команд.

Однако на деле до настоящего времени программ для реального распознавания речи (да еще и на русском языке) практически не существует, и созданы они будут, очевидно, не скоро. Более того, даже обратная распознаванию задача — синтез речи, что, казалось бы, значительно проще распознавания, до конца так и не решена. Любая синтезированная речь воспринимается человеком хуже, чем живая, причем это особенно заметно при передаче по каналу телефонной связи, то есть как раз там, где она сегодня наиболее востребована.

«Ну все, тебе конец», — сказал Иван Царевич, глядя прямо в глаза третьей голове Змея Горыныча. Она растерянно посмотрела на две другие. Те в ответ злорадно ухмыльнулись.

Анекдот

1997 году выход на коммерческий рынок знаменитого «Горыныча» (по существу адаптации программы Dragon Dictate Naturally Speaking, проведенной силами малоизвестной до того времени российской компании White Group, официального дистрибьютора Dragon Systems) стал своеобразной сенсацией. Программа казалась вполне работоспособной, а ее цена представлялась весьма умеренной. Однако время идет, «Горынычи» меняют интерфейсы и версии, но никаких ценных свойств не приобретают. Может быть, ядро Dragon Naturally Speaking было как-то настроено на особенности англоязычной речи, но даже после последовательной замены драконьей головы на три головы «Горыныча» оно дает не более 30-40% распознавания среднего уровня лексики, причем при тщательном проговаривании. Да и кому это вообще нужно? Как известно, по заявлениям разработчиков компаний Dragon Systems, IBM и Lernout&Hauspie, их программы при непрерывной диктовке были способны правильно распознавать до 95% текста, но ведь и они давно уже не выпускаются, ибо известно, что для комфортной работы точность распознавания необходимо довести до 99%. Надо ли говорить, что для завоевания подобных высот в реальных условиях требуются, мягко говоря, немалые усилия.

Кроме того, программа требует длительного периода тренировки и настройки под конкретного пользователя, очень капризна к оборудованию, более чем чувствительна к интонации и скорости произнесения фраз, так что возможности ее обучения распознаванию различных голосов сильно различаются.

Впрочем, может, кто-нибудь и приобретет этот пакет в качестве некой продвинутой игрушки, но пальцам, уставшим от работы с клавиатурой, это никак не поможет, пусть даже производители «Горыныча» утверждают, что скорость ввода речевого материала и трансформации его в текст составляет 500-700 знаков в минуту, что недоступно даже для нескольких опытных машинисток, если сложить скорость их работы.

При ближайшем рассмотрении новой версии этой программы ничего путного извлечь из нее нам так и не удалось. Даже после длительного «обучения» программы (а стандартный словарь нам вообще не помог) оказалось, что диктовка по-прежнему должна осуществляться строго по словам (то есть после каждого слова нужно делать паузу) и слова нужно произносить отчетливо, что не всегда характерно для речи. Конечно, «Горыныч» — это модификация англоязычной системы, а для английского иной подход просто немыслим, но говорить в такой манере по-русски показалось нам особенно неестественным. К тому же в процессе обычного разговора на любом языке интенсивность звука практически никогда не падает до нуля (в этом можно убедиться по спектрограммам), а ведь распознавать диктовку текстов общей тематики, выполняемую в манере слитной речи, коммерческие программы научились уже лет 5-10 назад.

Система ориентирована в первую очередь на ввод, но содержит средства, позволяющие исправить неверно услышанное слово, для чего «Горыныч» предлагает список вариантов. Можно поправить текст и с клавиатуры, что, кстати, постоянно и приходится делать. С клавиатуры вводятся и слова, отсутствующие в словаре. Помнится, в прежних версиях утверждалось, что чем чаще вы диктуете, тем больше система привыкает к вашему голосу, но ни тогда, ни сейчас мы этого что-то не заметили. Нам даже показалось, что работать с программой «Горыныч» по-прежнему сложнее, чем, например, обучать попугая разговаривать, а из новинок версии 3.0 можно отметить только более «попсовый» мультимедийный интерфейс.

Одним словом, проявление прогресса в этой области только одно: из-за увеличения мощности компьютера совершенно пропала временная задержка между произнесением слова и отображением его письменного варианта на экране, а число правильных попаданий, увы, не увеличилось.

Анализируя возможности программы, мы все больше склоняемся к мнению специалистов, что лингвистический анализ текста — обязательная стадия процесса автоматического ввода под диктовку. Без этого современное качество распознавания не может быть достигнуто, да и многие эксперты связывают перспективы речевых систем именно с дальнейшим развитием содержащихся в них лингвистических механизмов. Как следствие, речевые технологии делаются все более зависимыми от того языка, с которым они работают. А это значит, во-первых, что распознавание, синтез и обработка русской речи являются тем делом, заниматься которым должны именно российские разработчики, а во-вторых, только специализированные отечественные продукты, изначально ориентированные именно на русский язык, смогут по-настоящему решить ту задачу. Правда, здесь следует отметить, что отечественные специалисты петербургского «Центра речевых технологий» (ЦРТ) считают, что создание собственной системы диктовки в нынешних российских условиях не окупится.

Прочие игрушки

ока технологии распознавания речи российскими разработчиками успешно применяются в основном в интерактивных обучающих системах и играх вроде «Мой говорящий словарь», Talk to Me или «Профессор Хиггинс», созданных фирмой «ИстраСофт». Используются они для контроля произношения у изучающих английский язык и аутентификации пользователя. Развивая программу «Профессор Хиггинс», сотрудники «ИстраСофт» научились членить слова на элементарные сегменты, которые соответствуют звукам речи и не зависят ни от диктора, ни от языка (прежде системы распознавания речи не производили такой сегментации, а наименьшей единицей для них было слово). При этом выделение фонем из потока слитной речи, их кодирование и последующее восстановление происходит в режиме реального времени. Указанная технология распознавания речи нашла довольно остроумное применение — она позволяет существенно сжимать файлы с диктофонными записями или речевыми сообщениями. Способ, предложенный фирмой «ИстраСофт», допускает сжатие речи в 200 раз, причем при сжатии менее чем в 40 раз качество речевого сигнала практически не ухудшается. Интеллектуальная обработка речи на уровне фонем перспективна не только как способ сжатия, но и как шаг на пути к созданию нового поколения систем распознавания речи, ведь теоретически машинное распознавание речи, то есть ее автоматическое представление в виде текста, как раз и является крайней степенью сжатия речевого сигнала.

Сегодня фирма «ИстраСофт» помимо обучающих программ предлагает на своем сайте (http://www.istrasoft.ru/user.html) и программы для сжатия/проигрывания звуковых файлов, а также демонстрационную программу голосонезависимого распознавания команд русского языка Istrasoft Voice Commander.

Казалось бы, теперь для того, чтобы создать основанную на новой технологии систему распознавания, осталось сделать совсем немного…

), которая работает в этой области с 1990 года, похоже, добилась определенных успехов. ЦРТ имеет в своем арсенале целый набор программных и аппаратных средств, предназначенных для шумоочистки и для повышения качества звуковых, и в первую очередь речевых, сигналов — это компьютерные программы, автономные устройства, платы (DSP), встраиваемые в устройства каналов записи или передачи речевой информации (мы уже писали об этой фирме в статье «Как улучшить разборчивость речи?» в № 8’2004). «Центр речевых технологий» известен как разработчик средств шумоподавления и редактирования звука: Clear Voice, Sound Cleaner, Speech Interactive Software, Sound Stretcher и др. Специалисты фирмы принимали участие в восстановлении аудиоинформации, записанной на борту затонувшей подлодки «Курск» и на потерпевших катастрофы воздушных судах, а также в расследовании ряда уголовных дел, для которых требовалось установить содержание фонограмм речи.

Комплекс шумоочистки речи Sound Cleaner представляет собой профессиональный набор программно-аппаратных средств, предназначенных для восстановления разборчивости речи и для очищения звуковых сигналов, записанных в сложных акустических условиях или передаваемых по каналам связи. Этот действительно уникальный программный продукт предназначен для шумоочистки и повышения качества звучания живого (то есть поступающего в реальном времени) или записанного звукового сигнала и может помочь в повышении разборчивости и текстовой расшифровке низкокачественных речевых фонограмм (в том числе архивных), записанных в сложных акустических условиях.

Естественно, Sound Cleaner эффективнее работает в отношении шумов и искажений звука известной природы, таких как типовые шумы и искажения каналов связи и звукозаписи, шумы помещений и улиц, работающих механизмов, транспортных средств, бытовой техники, голосового «коктейля», медленной музыки, электромагнитных наводок систем питания, компьютерной и другой техники, эффектов реверберации и эха. В принципе, чем равномернее и «регулярнее» шум, тем успешнее этот комплекс с ним справится.

Однако при двухканальном съеме информации Sound Cleaner существенно снижает влияние шумов любого типа — например, он имеет методы двухканальной адаптивной фильтрации, предназначенные для подавления как широкополосных нестационарных помех (таких как речь, радио или телетрансляция, шумы зала и т.д.), так и периодических (вибрации, сетевые наводки и т.п.). Эти методы основаны на том, что при выделении полезного сигнала используется дополнительная информация о свойствах помехи, представленная в опорном канале.

Коль скоро мы говорим о распознавании речи, то нельзя не упомянуть о другой разработке ЦРТ — семействе компьютерных транскрайберов, которые, к сожалению, пока еще не являются программами автоматического распознавания речи и преобразования ее в текст, а скорее представляют собой компьютерные цифровые магнитофоны, управляемые из специализированного текстового редактора. Данные устройства предназначены для повышения скорости и улучшения комфортности документирования звукозаписей устной речи при подготовке сводок, протоколов совещаний, переговоров, лекций, интервью, их также применяют в безбумажном делопроизводстве и во многих других случаях. Транскрайберы отличаются простотой и удобством в использовании и доступны даже для непрофессиональных операторов. При этом скорость работы по набору текста возрастает в два-три раза у профессиональных операторов, печатающих вслепую, а у непрофессионалов — в пять-десять раз! Кроме того, значительно уменьшается механический износ магнитофона и ленты, если речь идет об аналоговом источнике. К тому же у компьютерных транскрайберов существует интерактивная возможность сверки набранного текста и соответствующего звукового трека. Связь текста и речи устанавливается автоматически и позволяет в набранном тексте при подведении курсора к исследуемой части текста мгновенно автоматически находить и прослушивать соответствующие звуковые фрагменты речевого сигнала. Повышения разборчивости речи можно добиться здесь как путем замедления скорости воспроизведения без искажения тембра голоса, так и путем многократного повторения неразборчивых фрагментов в режиме кольца.

Разумеется, гораздо проще реализовать программу, способную распознавать только ограниченный, небольшой набор управляющих команд и символов. Это, например, могут быть цифры от 0 до 9 в телефоне, слова «да»/«нет» и односложные команды вызова нужных абонентов и т.д. Такие программы появились самыми первыми и уже давно применяются в телефонии для голосового набора номера или выбора абонента.

Точность распознавания, как правило, повышается при предварительной настройке на голос конкретного пользователя, причем этим способом можно добиться распознавания речи даже тогда, когда у говорящего имеется дефект дикции или акцент. Все вроде бы хорошо, но заметные успехи в этой области видны только в том случае, если предполагается индивидуальное применение оборудования или ПО одним или несколькими пользователями, в крайнем случае, для каждого из которых создается свой индивидуальный «профиль».

Короче говоря, несмотря на все достижения последних лет, средства для распознавания слитной речи все еще допускают большое количество ошибок, нуждаются в длительной настройке, требовательны к аппаратной части и к квалификации пользователя и отказываются работать в зашумленных помещениях, хотя последнее важно как для шумных офисов, так и для мобильных систем и эксплуатации в условиях телефонной связи.

Однако распознавание речи, как и машинный перевод с одного языка на другой, относится к так называемым культовым компьютерным технологиям, к которым проявляется особое внимание. Интерес к данным технологиям постоянно подогревается бесчисленными произведениями писателей-фантастов, поэтому неизбежны постоянные попытки создать такой продукт, который должен соответствовать нашим представлениям о технологиях завтрашнего дня. И даже те проекты, которые по своей сути ничего собой не представляют, часто бывают коммерчески вполне успешны, так как потребителя живо интересует сама возможность подобных реализаций, даже независимо от того, сможет ли он применить ее на практике.

Да только воз и ныне там.
И.А. Крылов. Басня «Лебедь, Щука и Рак»

Две главные задачи машинного распознавания речи — достижение гарантированной точности при ограниченном наборе команд хотя бы для одного фиксированного голоса и независящее от дикции распознавание произвольной слитной речи с приемлемым качеством — не решены до сих пор, несмотря на длительную историю их разработки. Более того, существуют сомнения в принципиальной возможности решения обеих задач, поскольку даже человек не всегда может стопроцентно распознать речь собеседника.

огда-то писателям-фантастам возможность обычного разговора с компьютером казалась столь очевидной и естественной, что первые вычислительные машины, лишенные голосового интерфейса, воспринимались как нечто неполноценное.

Казалось бы, почему не заняться решением этой проблемы программно, с использованием «умных» компьютеров? Ведь и производители подобных продуктов вроде бы имеются, и мощность компьютеров непрерывно растет, и технологии совершенствуются. Однако успехи в области автоматического распознавания речи и преобразования ее в текст, похоже, находятся на том же уровне, что и 20-40 лет назад. Помнится, еще в середине 90-х годов компания IBM уверенно заявила о наличии такого рода инструментов в OS/2, а чуть позже и Microsoft подключилась к внедрению подобных технологий. Пыталась заниматься распознаванием речи и компания Apple, но в начале 2000 года она официально объявила об отказе от этого проекта. Продолжают работать в этой области компании IBM (Via Voice) и Philips, причем функцию распознавания речи IBM не только встраивала в свою операционную систему OS/2 (ныне уже канувшую в лету), но и до сих пор выпускает в качестве отдельного продукта. Пакет для распознавания слитной речи Via Voice (http://www-306.ibm.com/software/voice/viavoice) от IBM отличался тем, что с самого начала даже без обучения распознавал до 80% слов. При обучении же вероятность правильного распознавания повышалась до 95%, а к тому же параллельно с настройкой программы на конкретного пользователя происходило освоение будущим оператором навыков работы с системой. Сейчас ходят слухи о том, что подобные новации будут реализованы и в составе Windows XP, хотя глава и основатель корпорации Билл Гейтс неоднократно заявлял, что считает речевые технологии еще не готовыми для массового применения.

Когда-то американская компания Dragon Systems создала, наверное, первую коммерческую систему распознавания речи — Naturally Speaking Preferred, которая работала еще в 1982 году на IBM PC (даже не XT!). Правда, эта программа больше напоминала игру и с тех пор никаких серьезных подвижек компания так и не сделала, а к 2000 году и вовсе разорилась, причем ее последняя версия Dragon Dictate Naturally Speaking была продана компании Lernout&Hauspie Speech Products (L&H), являвшейся тоже одним из лидеров в области систем и методов распознавания и синтеза речи (Voice Xpress). L&H, в свою очередь, тоже дошла до банкротства с распродажей активов и имущества (к слову сказать, Dragon Systems была продана почти за 0,5 млрд. долл., а L&H — уже за 10 млн., так что своими масштабами в этой области впечатляет не прогресс, а регресс!). Технологии L&H и Dragon Systems перешли к компании ScanSoft, которая занималась до этого распознаванием оптических образов (в ее ведении сегодня находятся некоторые известные программы распознавания печатного текста типа OmniPage), но там, похоже, этим никто серьезно не занимается.

Российская компания Cognitive Technologies, достигнувшая значительных успехов в области распознавания символов, сообщила в 2001 году о совместном проекте с Intel по созданию систем распознавания русской речи — для Intel был подготовлен речевой корпус русского языка RuSpeech. Собственно, RuSpeech представляет собой речевую базу данных, которая содержит фрагменты непрерывной русской речи с соответствующими текстами, фонетической транскрипцией и дополнительной информацией о дикторах. Cognitive Technologies ставила перед собой цель создать «дикторонезависимую» систему распознавания непрерывной речи, а речевой интерфейс состоял из системы сценария диалога, синтеза речи по тексту и системы распознавания речевых команд.

Однако на деле до настоящего времени программ для реального распознавания речи (да еще и на русском языке) практически не существует, и созданы они будут, очевидно, не скоро. Более того, даже обратная распознаванию задача — синтез речи, что, казалось бы, значительно проще распознавания, до конца так и не решена. Любая синтезированная речь воспринимается человеком хуже, чем живая, причем это особенно заметно при передаче по каналу телефонной связи, то есть как раз там, где она сегодня наиболее востребована.

«Ну все, тебе конец», — сказал Иван Царевич, глядя прямо в глаза третьей голове Змея Горыныча. Она растерянно посмотрела на две другие. Те в ответ злорадно ухмыльнулись.

Анекдот

1997 году выход на коммерческий рынок знаменитого «Горыныча» (по существу адаптации программы Dragon Dictate Naturally Speaking, проведенной силами малоизвестной до того времени российской компании White Group, официального дистрибьютора Dragon Systems) стал своеобразной сенсацией. Программа казалась вполне работоспособной, а ее цена представлялась весьма умеренной. Однако время идет, «Горынычи» меняют интерфейсы и версии, но никаких ценных свойств не приобретают. Может быть, ядро Dragon Naturally Speaking было как-то настроено на особенности англоязычной речи, но даже после последовательной замены драконьей головы на три головы «Горыныча» оно дает не более 30-40% распознавания среднего уровня лексики, причем при тщательном проговаривании. Да и кому это вообще нужно? Как известно, по заявлениям разработчиков компаний Dragon Systems, IBM и Lernout&Hauspie, их программы при непрерывной диктовке были способны правильно распознавать до 95% текста, но ведь и они давно уже не выпускаются, ибо известно, что для комфортной работы точность распознавания необходимо довести до 99%. Надо ли говорить, что для завоевания подобных высот в реальных условиях требуются, мягко говоря, немалые усилия.

Кроме того, программа требует длительного периода тренировки и настройки под конкретного пользователя, очень капризна к оборудованию, более чем чувствительна к интонации и скорости произнесения фраз, так что возможности ее обучения распознаванию различных голосов сильно различаются.

Впрочем, может, кто-нибудь и приобретет этот пакет в качестве некой продвинутой игрушки, но пальцам, уставшим от работы с клавиатурой, это никак не поможет, пусть даже производители «Горыныча» утверждают, что скорость ввода речевого материала и трансформации его в текст составляет 500-700 знаков в минуту, что недоступно даже для нескольких опытных машинисток, если сложить скорость их работы.

При ближайшем рассмотрении новой версии этой программы ничего путного извлечь из нее нам так и не удалось. Даже после длительного «обучения» программы (а стандартный словарь нам вообще не помог) оказалось, что диктовка по-прежнему должна осуществляться строго по словам (то есть после каждого слова нужно делать паузу) и слова нужно произносить отчетливо, что не всегда характерно для речи. Конечно, «Горыныч» — это модификация англоязычной системы, а для английского иной подход просто немыслим, но говорить в такой манере по-русски показалось нам особенно неестественным. К тому же в процессе обычного разговора на любом языке интенсивность звука практически никогда не падает до нуля (в этом можно убедиться по спектрограммам), а ведь распознавать диктовку текстов общей тематики, выполняемую в манере слитной речи, коммерческие программы научились уже лет 5-10 назад.

Система ориентирована в первую очередь на ввод, но содержит средства, позволяющие исправить неверно услышанное слово, для чего «Горыныч» предлагает список вариантов. Можно поправить текст и с клавиатуры, что, кстати, постоянно и приходится делать. С клавиатуры вводятся и слова, отсутствующие в словаре. Помнится, в прежних версиях утверждалось, что чем чаще вы диктуете, тем больше система привыкает к вашему голосу, но ни тогда, ни сейчас мы этого что-то не заметили. Нам даже показалось, что работать с программой «Горыныч» по-прежнему сложнее, чем, например, обучать попугая разговаривать, а из новинок версии 3.0 можно отметить только более «попсовый» мультимедийный интерфейс.

Одним словом, проявление прогресса в этой области только одно: из-за увеличения мощности компьютера совершенно пропала временная задержка между произнесением слова и отображением его письменного варианта на экране, а число правильных попаданий, увы, не увеличилось.

Анализируя возможности программы, мы все больше склоняемся к мнению специалистов, что лингвистический анализ текста — обязательная стадия процесса автоматического ввода под диктовку. Без этого современное качество распознавания не может быть достигнуто, да и многие эксперты связывают перспективы речевых систем именно с дальнейшим развитием содержащихся в них лингвистических механизмов. Как следствие, речевые технологии делаются все более зависимыми от того языка, с которым они работают. А это значит, во-первых, что распознавание, синтез и обработка русской речи являются тем делом, заниматься которым должны именно российские разработчики, а во-вторых, только специализированные отечественные продукты, изначально ориентированные именно на русский язык, смогут по-настоящему решить ту задачу. Правда, здесь следует отметить, что отечественные специалисты петербургского «Центра речевых технологий» (ЦРТ) считают, что создание собственной системы диктовки в нынешних российских условиях не окупится.

Прочие игрушки

ока технологии распознавания речи российскими разработчиками успешно применяются в основном в интерактивных обучающих системах и играх вроде «Мой говорящий словарь», Talk to Me или «Профессор Хиггинс», созданных фирмой «ИстраСофт». Используются они для контроля произношения у изучающих английский язык и аутентификации пользователя. Развивая программу «Профессор Хиггинс», сотрудники «ИстраСофт» научились членить слова на элементарные сегменты, которые соответствуют звукам речи и не зависят ни от диктора, ни от языка (прежде системы распознавания речи не производили такой сегментации, а наименьшей единицей для них было слово). При этом выделение фонем из потока слитной речи, их кодирование и последующее восстановление происходит в режиме реального времени. Указанная технология распознавания речи нашла довольно остроумное применение — она позволяет существенно сжимать файлы с диктофонными записями или речевыми сообщениями. Способ, предложенный фирмой «ИстраСофт», допускает сжатие речи в 200 раз, причем при сжатии менее чем в 40 раз качество речевого сигнала практически не ухудшается. Интеллектуальная обработка речи на уровне фонем перспективна не только как способ сжатия, но и как шаг на пути к созданию нового поколения систем распознавания речи, ведь теоретически машинное распознавание речи, то есть ее автоматическое представление в виде текста, как раз и является крайней степенью сжатия речевого сигнала.

Сегодня фирма «ИстраСофт» помимо обучающих программ предлагает на своем сайте (http://www.istrasoft.ru/user.html) и программы для сжатия/проигрывания звуковых файлов, а также демонстрационную программу голосонезависимого распознавания команд русского языка Istrasoft Voice Commander.

Казалось бы, теперь для того, чтобы создать основанную на новой технологии систему распознавания, осталось сделать совсем немного…

), которая работает в этой области с 1990 года, похоже, добилась определенных успехов. ЦРТ имеет в своем арсенале целый набор программных и аппаратных средств, предназначенных для шумоочистки и для повышения качества звуковых, и в первую очередь речевых, сигналов — это компьютерные программы, автономные устройства, платы (DSP), встраиваемые в устройства каналов записи или передачи речевой информации (мы уже писали об этой фирме в статье «Как улучшить разборчивость речи?» в № 8’2004). «Центр речевых технологий» известен как разработчик средств шумоподавления и редактирования звука: Clear Voice, Sound Cleaner, Speech Interactive Software, Sound Stretcher и др. Специалисты фирмы принимали участие в восстановлении аудиоинформации, записанной на борту затонувшей подлодки «Курск» и на потерпевших катастрофы воздушных судах, а также в расследовании ряда уголовных дел, для которых требовалось установить содержание фонограмм речи.

Комплекс шумоочистки речи Sound Cleaner представляет собой профессиональный набор программно-аппаратных средств, предназначенных для восстановления разборчивости речи и для очищения звуковых сигналов, записанных в сложных акустических условиях или передаваемых по каналам связи. Этот действительно уникальный программный продукт предназначен для шумоочистки и повышения качества звучания живого (то есть поступающего в реальном времени) или записанного звукового сигнала и может помочь в повышении разборчивости и текстовой расшифровке низкокачественных речевых фонограмм (в том числе архивных), записанных в сложных акустических условиях.

Естественно, Sound Cleaner эффективнее работает в отношении шумов и искажений звука известной природы, таких как типовые шумы и искажения каналов связи и звукозаписи, шумы помещений и улиц, работающих механизмов, транспортных средств, бытовой техники, голосового «коктейля», медленной музыки, электромагнитных наводок систем питания, компьютерной и другой техники, эффектов реверберации и эха. В принципе, чем равномернее и «регулярнее» шум, тем успешнее этот комплекс с ним справится.

Однако при двухканальном съеме информации Sound Cleaner существенно снижает влияние шумов любого типа — например, он имеет методы двухканальной адаптивной фильтрации, предназначенные для подавления как широкополосных нестационарных помех (таких как речь, радио или телетрансляция, шумы зала и т.д.), так и периодических (вибрации, сетевые наводки и т.п.). Эти методы основаны на том, что при выделении полезного сигнала используется дополнительная информация о свойствах помехи, представленная в опорном канале.

Коль скоро мы говорим о распознавании речи, то нельзя не упомянуть о другой разработке ЦРТ — семействе компьютерных транскрайберов, которые, к сожалению, пока еще не являются программами автоматического распознавания речи и преобразования ее в текст, а скорее представляют собой компьютерные цифровые магнитофоны, управляемые из специализированного текстового редактора. Данные устройства предназначены для повышения скорости и улучшения комфортности документирования звукозаписей устной речи при подготовке сводок, протоколов совещаний, переговоров, лекций, интервью, их также применяют в безбумажном делопроизводстве и во многих других случаях. Транскрайберы отличаются простотой и удобством в использовании и доступны даже для непрофессиональных операторов. При этом скорость работы по набору текста возрастает в два-три раза у профессиональных операторов, печатающих вслепую, а у непрофессионалов — в пять-десять раз! Кроме того, значительно уменьшается механический износ магнитофона и ленты, если речь идет об аналоговом источнике. К тому же у компьютерных транскрайберов существует интерактивная возможность сверки набранного текста и соответствующего звукового трека. Связь текста и речи устанавливается автоматически и позволяет в набранном тексте при подведении курсора к исследуемой части текста мгновенно автоматически находить и прослушивать соответствующие звуковые фрагменты речевого сигнала. Повышения разборчивости речи можно добиться здесь как путем замедления скорости воспроизведения без искажения тембра голоса, так и путем многократного повторения неразборчивых фрагментов в режиме кольца.

Разумеется, гораздо проще реализовать программу, способную распознавать только ограниченный, небольшой набор управляющих команд и символов. Это, например, могут быть цифры от 0 до 9 в телефоне, слова «да»/«нет» и односложные команды вызова нужных абонентов и т.д. Такие программы появились самыми первыми и уже давно применяются в телефонии для голосового набора номера или выбора абонента.

Точность распознавания, как правило, повышается при предварительной настройке на голос конкретного пользователя, причем этим способом можно добиться распознавания речи даже тогда, когда у говорящего имеется дефект дикции или акцент. Все вроде бы хорошо, но заметные успехи в этой области видны только в том случае, если предполагается индивидуальное применение оборудования или ПО одним или несколькими пользователями, в крайнем случае, для каждого из которых создается свой индивидуальный «профиль».

Короче говоря, несмотря на все достижения последних лет, средства для распознавания слитной речи все еще допускают большое количество ошибок, нуждаются в длительной настройке, требовательны к аппаратной части и к квалификации пользователя и отказываются работать в зашумленных помещениях, хотя последнее важно как для шумных офисов, так и для мобильных систем и эксплуатации в условиях телефонной связи.

Однако распознавание речи, как и машинный перевод с одного языка на другой, относится к так называемым культовым компьютерным технологиям, к которым проявляется особое внимание. Интерес к данным технологиям постоянно подогревается бесчисленными произведениями писателей-фантастов, поэтому неизбежны постоянные попытки создать такой продукт, который должен соответствовать нашим представлениям о технологиях завтрашнего дня. И даже те проекты, которые по своей сути ничего собой не представляют, часто бывают коммерчески вполне успешны, так как потребителя живо интересует сама возможность подобных реализаций, даже независимо от того, сможет ли он применить ее на практике.